タンクモデルを用いた流出解析

解析事業部 環境解析部

吉田稔彦

1.はじめに

急峻な地形に富んだわが国では河川の勾配が 大きく、水の流れが速い。モンスーン気候に属して いることもあって,毎年の梅雨時,台風時には大き な洪水被害をうけている。特に市街地化が進む都 市部においてはアスファルト・コンクリートからなる 不浸透域の面積が増えていることは河川流出を早 める結果となっている。降雨 河川流出の関係を 明らかにする

流出解析は ,1933 年の Horton の降 雨浸透に基づく流出の理論はじまった。現在では コンピュータの発達に伴い, 流出の基礎方程式を 直接組み込んだ数値モデルが生み出されている。 ここでとりあげるタンクモデルは簡易なモデルイ メージでありながら,比較的再現性の高いモデルと して用いられている。今回は、1998 年、1999 年に 起きた新湊川の浸水被害時の河川流量を対象とし て同モデルの検証を行った。

上段に降雨から蒸発散を差し引かれた量の水位 が入力として設定される。最上段にで設定された 水位は時間とともに下段のタンクへと浸透するか, ある高さのところに設けられた側面孔から流出する。 各段のタンクによる側面流出が成分流出(上段は 表面流出,中段は中間流出,下段は地下水流出) となり,各段側面流出の合計がその時刻の河川流 出となる。各タンク内の水位がその孔の高さに達 するまではそのタンクへ降雨補給される仕組みと なっている。各側面孔や浸透孔の流出高からの Q_i はそれぞれ, $L_i \times i, L_i \times i$ (図 2)で表され る。

図 3 に降雨強度の違いによる流出イメージを示 す^{[4],[5]}。

このモデルでは降水量に対して水位や流出量 が非線形であり,また降雨の挙動から河川流出変

2.解析モデルの概要

2.1 タンクモデル

タンクモデル^{[1],[2]}は 1972 年に国立防災科学 技術センターの菅原正巳氏により提案されたモデ ルで国内だけでなく,海外でも利用されている。現 在,気象庁が行っている土砂災害予測での土壌 雨量指数の考え方もこのモデルの応用である^[3]。

図 1 に示す様に ,直列に並べられたタンクの最

図 1 タンクモデル概念図

1/7

図 2 タンクパラメータ対応図

化の遅れを表現できる。ただし,タンク段数などの モデル構造や,流出率,浸透率などのパラメータ は,モデル応答値と観測値との比較、検証で思考 錯誤的に設定する場合が多く,パラメータの物理 的な意味づけに難しい部分がある。

2.2 蒸発散量の算定

蒸発散量は可能蒸発散量から次のように推定した^[6]。月毎の日平均可能蒸発散量を式の Thomthwait 式を用いて算定し(Thornthwaite, 1948),可照時間が0でないとき時刻以外は一律 に該当日の日平均可能蒸発散量を適用した。

$$E_{p} = 0.533D_{0} \left(\frac{10t_{j}}{J} \right)^{3}$$

$$a = 6.75 \times 10^{-7} J^{3}$$

$$-7.71 \times 10^{-5} J^{3}$$

$$+1.792 \times 10^{-2} J^{4} 0.49239$$

$$J = \sum_{j=1}^{12} \left(\frac{t_{j}}{5} \right)^{1.514}$$
(1)

ここに,E_p:日平均可能蒸発散量(mm/day),D₀: 可照時間(12hr/day),t_j j月の平均気温()であ る。

3. 解析事例

今回は 1998 年,1999 年の2 年間に神戸市新 湊川の同じ地区で起こった浸水被害時を焦点に 解析を行った。1998/9/22 に近畿から北陸地方を 縦断した台風7 号による豪雨は同河川を氾濫させ, 床上浸水 500 戸,床下浸水 602 戸の被害をもたら した。1999/6/29 には梅雨前線の影響で西日本の 広い範囲で激しい雨が降り,前年に続いて再び氾 濫した^[7]。

本解析についての諸条件は以下の通りである。

対象地域	神戸市新湊川流域(図4)		
流域面積	2323.17 [ha] 🕅 4)		
	A 流域 429.91[ha]		
	B 流域 846.62[ha]		
	C 流域1046.64[ha]		
計算期間	1997/1 ~ 1999/8		
再現期間	1998/9/22 ,1999/6/29		
パラメータ			

新湊川は六甲山系に端を発し,神戸市兵庫区の 市街地を流れる二級河川である。同河川は上流部 で大きな集水域をかかえ,中流部でかなり急峻な 地形を有しているため非常に流出応答が敏感な

表1 使用パラメータ

	A 流域	B流域
L ₁	15.0	30.0
L ₂		
1		
2		
1		
L ₃		
3		
2		
L_4		
4		
3		

図4 解析対象範囲

河川である。また,図 5 のように川幅が狭いことも 流出を早めている。図 6 に今回の解析に利用した 流域区分を示す。解析対象とする範囲は浸水被 害のあった神戸市兵庫区新湊川の洗心橋付近を 流末点とし,A,B,C の 3 つの流域を設定した。A 流域は大半が市街地を占め,中流部に勾配大き い傾斜地を含むため,タンク形状パラメータは流 出応答の大きいものを設定した。B,C 流域につい てはまとまった住宅地が存在するものの山林面積 の方が上回っていると考え,タンク形状パラメータ は A 流域よりは応答が小さいものとした。なお,今 回の計算ではダム,貯水池等の人為的操作を考 慮にいれなかった。 入力元となる気象データは気象庁の1.時間値 アメダスデータ(神戸)を用いた。また,今回再現に 用いた実測値は10分刻み値であるが,アメダス値 に合わせ,時間平均した。

3.1 シミュレーション結果と検証

1998/9/22 に起こった浸水被害時の河川流量 をもちいてタンクパラメータの同定を行い, 1999/6/29の被災時に同じパラメータを適用した。

1998/09/22 の実測値流量と計算値流量の比較 グラフを図 6 に,計算値流量の流出成分別グラフ を図7に示す。

1998/9/22 9:00 頃から降り始めた雨は豪雨へと

図5 洗心橋からみる新湊川-写真奥が上流

図 6 流量比較グラフ 1998/9/22

図7 流出成分組成グラフ 1998/9/22

変わり 11:10 に大雨洪水暴風波浪高潮警報が発 令された。14:10 頃に出水が始まったが ,流量の 実測値は 10 分値データで 130~140m³/sec を示 しており ,計算値もよく追随した形のグラフとなって いる。図 7 に示した流出組成をみると流出応答の 早い表面流出が大きいことがわかる。

実測流量 Q_a と計算値流量 Q_s との間の定量的 評価の指標として合致率^[8]と相関係数を算出した。 合致率 E の算出法を (2) 元に,相関係数 r の算出 法を (3) 元示す。

$$E = 1 - \frac{\sqrt{\sum_{i=1}^{N} (Q_s - Q_a)^2}}{Q_{total}}$$
(2)

Q_{total} 実測負荷量の総合計

$$r = \frac{\sum_{i=1}^{N} \left(Q_s = \overline{Q_s} \right) \left(Q_a - \overline{Q_a} \right)}{\sqrt{\sum \left(Q_s - \overline{Q_s} \right)^2} \sqrt{\sum \left(Q_a - \overline{Q_a} \right)^2}}$$
(3)

合致率は計算流量と実測流量の収支合致をみる目安となる。(2)式からわかるように各時刻で計算値と実測値の差が小さいほど1に近づく。相関係数については,実測値,計算値の両データをト

1999/06/29 の実測流量と計算値流量の比較グ ラフを図 8 に,計算値流量の流出成分別グラフを 図 9 に示す。

表2 検証結果

	1998/9/22	1999/6/29
合致率E	0.819	0.907
相関関係 r	0.911	0.933

1999/6/29 の計算でも, 合致率0.907 と比較的 高い値が得られた。相関係数についても0.933 と 計算結果は実測値に追随していると言える。合致 率,相関係数の両指標の結果からみて今回の計 算は再現がとれていると考える。図 9 に示した流 出組成をみると流出応答の早い表面流出が合計 流出の大半を占め,流出応答の同河川での流出 挙動をよく表現していると考える。

図 9 流出成分組成グラフ 1999/6/29

4.おわりに

今回の解析では 1998/9/22,1999/6/29 の流 量合致率が 0.819,0.907,相関係数が 0.911, 0.933 と短期間ではあるが,よい再現がとれたと言 える。また,1 回のあたりの計算時間も数分ほどで 実時間流出予測に耐えうるほどであった。

実際,対象流域にはダム、貯水池があり,下流 部の市街地については下水道整備されているた め雨水・下水管などの管路網を考慮する必要があ る。今後,それらの GIS データベースに加えて地 形等のメッシュデータを組み合わせた分布型流出 モデル(今回の解析は集中型モデル)へ応用した ときにも,充分に実予測(再現性,即時性)に耐え 得ると考える。また,タンク水位から土砂災害,浸 水被害への予測指標^{[10],[3]}を得られるとすれば, 流量予測だけでなく降雨による総合的な災害予測 システムに利用可能なモデルであると考える。

図10: GISデータベースへの応用イメージ 個々のメッシュデータに土地利用、気象情報、インフラ情報 を用意しそれぞれのメッシュで流出モデルを適用

参考文献

- [1] 菅原正巳著 怺文学講座流出解析法」供立出版1972年)
- [2] 菅原正巳著 怺文学講座別巻続 流出解析法」(共立出版1979年)

- [5] 日野幹雄 長谷部雅彦共著 怺文流出解析法」 (森北出版1993年)
- [6] 杉尾 哲・衛藤美佳・今山 清・出口近士・ A.SUHARGANTO 宮崎市における地表面の被 覆状況変化に伴う不圧地下水位の低下」日本地 下水学会 地下水学会誌第41巻第4号253~262 1999」

- [7] 災害復旧工事の失敗に学ぶ兵庫県 新湊川の改修工事」日経BP社 日経コンストラクション2000.6.9 p52」
- [8] 國松孝男 村岡浩爾編著 河川汚濁のモデル 解析」(技報堂出版1989年)
- [9] 鈴木俊朗 寺川陽 松浦達郎 実時間洪水予 測のための分布型流出モデルの開発」土木技 術研究所 吐木技術資料1996 38-10」
- [10] 阿部清明 塩月善晴 山口県の都市浸水害発 生予測に関する研究」土木学会 生木学会論 文集No.628/-48, 55-1999.8」

