応答震度法による排水機場の解析事例の紹介

エンジニアリング本部 防災・環境解析部 地盤・構造解析グループ

西村 貴一

1. はじめに

指針¹⁾では排水機場の静的照査法による耐震性 能の照査は、地盤変形の影響が支配的であるときは、 応答変位法と応答震度法に基づいて行うのがよいと 記述されているが、今まで多くの場合で応答変位法 が選択され、応答震度法が用いられることはほとんど なく、扱うことの出来る技術者も少なかった。

しかし、最近では解析手法として応答震度法を指 定する案件も増加傾向にあり、応答震度法に対応す べく準備する必要がある。

本稿では、応答震度法の概要や特長、および応 答変位法との違いについて論じ、応答震度法の解析 事例を紹介する。

2. 応答震度法とは

2.1 解析手法の理論

応答震度法は、周辺地盤を土要素としてモデル化 し、構造物および土要素に対して応答加速度を外力 条件として考慮する解析手法である。土要素のモデ ル化には、メッシュ作成を伴う。

応答変位法は、構造物の周辺地盤をバネ要素とし てモデル化し、周辺地盤の地震時変位を外力条件と して考慮する解析手法であり、構造物には地盤変位 をバネ反力として考慮する。(図 1 参照)

いずれの手法においても、地盤応答解析を実施し、 応答値の深度分布を算出する。また、地盤変位を簡 易式により手計算で設定する方法も広く採用されて いる。

2.2 応答変位法との違い

応答変位法は、メッシュ作成が不要なのでモデル 作成が簡便である。しかし、地盤バネの値は、外力 の大小に対して、直接的な支配条件であるため、解 析結果への影響が大きいにもかかわらず、地盤バネ の地盤反力係数の設定に関しては、技術者の判断 によるばらつきが大きく、このことが応答変位法の解 析結果に、差異が生じる原因であると考えられる。

図 1 手法概念(左:応答震度法 右:応答変位法)

応答震度法は、メッシュを作成する必要があるが、 地盤応答解析結果より定まる地盤の変形係数を平面 ひずみ要素の変形係数として設定することができる ので、応答変位法の地盤反力係数設定時のような、 曖昧さを回避できる。

上記の2 手法に動的解析手法を加えた3 種類の 解析手法について、それぞれの特徴は図2のように 示され、応答震度法は動的解析と応答変位法の中 間程に位置する手法と言える。

図 2 解析手法の短所と長所

3. 排水機場の応答震度法適用事例

排水機場を対象構造物として、実際に応答震度法 を適用して解析した事例について紹介する。

3.1 使用プログラム

地盤の応答解析は、有効応力解析プログラムであ る「FLIP ROSE®Ver7.3」(一般財団法人 FLIP コン ソーシアム)を使用した。応力解析は、汎用構造解析 プログラム「TDAP III©Ver3.08.1」(株式会社アーク 情報システム、大成建設株式会社)を使用した。

3.2 解析モデル及び条件

対象構造物の図面を図3から図5に示す。

また、解析に用いる条件は表 1 のとおり設定した。 解析モデルは、排水機場を流水方向に直交する 単位幅モデルに切り出した断面モデルとした。

指針では河川構造物に対する照査は、レベル 2-1 地震動とレベル 2-2 地震動の両方に対して実施する ことになっているが、ここでは解析事例を示すことが 目的であるため、レベル 2-1 地震動に対してのみ計 算することにした。本排水機場は、常用の排水機場 であるので耐震性能 2 の構造物として取り扱った¹⁾。 計算例に用いる入力地震波形は、地盤種別(II 種 地盤)より判断して、「I-II-1 波」を採用した 3。

水槽内水による地震時動水圧は、指針より Westergaard の動水圧として取り扱う²⁰が、応答震度 法では、質点として取り扱う方が簡便であるので、土 研資料の方法⁴⁰により付加質量として質点換算した。 壁と床の接合部などの剛域は、剛な梁要素としてモ デル化した。地盤応答解析結果

地盤応答解析を実施し、解析に用いる応答加速 度深度分布と地盤のせん断弾性係数の深度分布を 求めた。

入力加速度波形に対応して、地盤は時刻歴応答 を示す。ここでは、一番厳しい条件として、構造物の 上端深度と下端深度の相対的な変位差が最大とな る時刻を抽出し、この時刻の各応答値を採用するこ とにした。それぞれの深度の変位とその差の時刻歴 図を図 6 に示す。時刻 31.37 秒で両者の変位差は 最大値 1.44mm を記録するので、この時刻の地盤応 答を解析条件として採用した。

時刻 31.37 秒の応答深度分布図を図 7 に示す。 地盤のせん断弾性係数G (kN/m²)は、せん断応力τ (kN/m²)とせん断ひずみγ の比率として定義した。

$G = \tau / \gamma$

時刻 31.37 秒の地盤応答は、Z 座標 15m 程度より も上の As1 層の応答加速度がそれ以深の各層よりも 大きく、地表面においては 0.9m/s²を示し、それ以深 の地盤応答加速度分布はほぼ一定の約-0.2m/s²を 示す。Z 座標 10m 前後に分布する As2 層において、 せん断ひずみとせん断応力が、低下する領域がある ことが分かる。

図 3 解析モデル

表 1 角	解析条件
-------	------

構造	地中埋設 RC 構造物			
耐震性能	耐震性能 2			
材料	σ ck=24N/mm ² (コンクリート)			
	SD345(鉄筋)			
地盤種別	II 種地盤(河川指針 I)			
入力波形	I-II-I 波(道示 V)			

义	6	時刻歷変位関係	ŝ
---	---	---------	---

図 7 応答深度分布(t=31.37 秒)

3.3 応力解析結果

時刻 31.37 秒の加速度深度分布を外力条件とし、 同時刻の地盤剛性を土要素のせん断剛性とした。以 上の条件を設定し、応力解析した結果の断面力図 (曲げモーメント図及びせん断力図)を図 8 に示す。 底版端部や吸水槽外壁の下端、配管室の床におい て比較的大きな断面力が生じることが判明した。

3.4 照査基準の設定

対象としている排水機場は、常用の排水機場であ り耐震性能2の構造物である。構造物の外周部は、 発生曲率が初降伏曲率を超過しないこと(弾性挙動 を示すこと)と発生せん断力がせん断耐力を超過し ないことを照査基準とした。

ポンプ室の床と配管室の床は、損傷すると排水機 能に障害をもたらす可能性があるので、発生曲率が 初降伏曲率を超過しないこと(弾性挙動を示すこと) と発生せん断力がせん断耐力を超過しないことを照 査基準とした。

それ以外の壁や床は、過度な損傷を生じないこと を目標として、レベル 2-1 地震動に対しては応答塑 性率が 3.0 以下であること³³と、発生せん断力がせん 断耐力を超過しないことを照査基準とした。

3.5 耐震性能照查

全ての部材の曲率照査を実施したところ、初降伏 曲率を超過する部材はなかった。代表的な部材の曲 率照査結果を表 2 に示す。

せん断耐力照査を実施したところ、底版端部、配 管室床、外壁下端などの部材において発生せん断 力がせん断耐力を超過した。代表的な部材のせん 断耐力照査結果を表 3に示す。なお、照査位置は、 図 9に示す通りである。

上記の照査結果より、本件排水機場はレベル 2-1 地震動に対して耐震性能 2 を満足せず補強を必要 とすることが判明した。

図 8 断面力分布(上:曲げモーメント下:せん断力)

表 2 曲率照查

		曲げ曲率照査			
部材	要素	発生曲率	初降伏曲率	応答塑性率	
位置	番号	Φd	$\Phi y0$	μd	判定
		[1/m]	[1/m]	(Φd/Φy0)	
底版	1795	8.304E-05	2.139E-03	降伏以下	OK
底版	1810	1.127E-04	2.139E-03	降伏以下	OK
配管室床	1844	-1.802E-04	-2.614E-03	降伏以下	OK
吸水槽外壁L	1973	4.108E-04	2.700E-03	降伏以下	OK
外壁R	2117	-8.344E-04	-2.614E-03	降伏以下	OK

表	3	せん	断耐ナ	阳杳
2	0	C/U	' E7 I IIU J Z J	

		せん断耐力照査				
部材	要素	せん断力	せん断耐力	余裕度		
位置	番号	S	Ps0	S/Ps0	判定	
		[kN/m]	[kN/m]			
底版	1795	418.6	463.1	0.90	OK	
底版	1810	555.5	463.1	1.20	NG	
配管室床	1844	413.5	379.3	1.09	NG	
吸水槽外壁L	1973	373.4	404.9	0.92	OK	
外壁R	2117	477.0	379.3	1.26	NG	

図 9 照查位置要素番号

本件構造物の場合、十分な曲げ耐力があることが 示されているので、既設構造物に対するせん断耐力 のみを向上させる各種のせん断補強鉄筋挿入工法 が有効な耐震補強の一例と考える。

4. おわりに

地中構造物に対する静的照査手法として応答変 位法と応答震度法があり、それぞれの特徴を簡単に 論じた。

次に、地中埋設された排水機場を例として応答震 度法を適用した照査事例を、解析手順を追って紹介 した。 実務においては、「予算・工期」、「構造条件」、「要 求性能」などの諸条件を勘案し、最適な解析手法を 選択することが肝要であり、必ずしも高度な解析理論 に基づくものが最適な解析手法ではない。応答震度 法は、河川構造分野での採用例は少ないが他手法 と異なった特徴があり、場合によっては最適な手法と なり得る。このように、モデルの個々の特徴を把握し、 案件に最適な解析手法を選択することにより、要求 に応じた結果を得ることが出来る。より多くの解析モ デルを使いこなす技術を保有し、状況に応じて様々 なモデルを使い分けることは、最適な結果を得るた めに重要である。

加えて、筆者の属するエンジニアリング本部では 様々な解析手法を用いて実務を遂行しており、お客 様からのご提案、あるいは当社からの提案により毎 年のように全く新しいモデル化手法や解析・照査手 法を実施している。当社としては、今後とも様々な解 析手法を蓄積し、社会資本整備の一翼を担うべく努 力を続けていきたい。

<参考文献>

- 「河川構造物の耐震性能照査指針・解説-V.揚 排水機場編-」(pp.3-7,平成24年2月,国土 交通省水管理・国土保全治水課)
- 「河川構造物の耐震性能照査指針・解説-I.共通編-」(p.18,平成24年2月,国土交通省水管理・国土保全治水課)
- 3)「道路橋示方書・同解説 V 耐震設計編」 (pp.150-152,304-310, 平成14年3月, 社団法 人日本道路協会)
- 4)「土木研究所資料第 4103 号 地震時保有水平 耐力法に基づく水門・堰の耐震性能照査に関 する計算例」(p.18,平成 20 年 3 月,独立行政法 人土坊研究所耐震研究グループ(振動))